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A method is presented to evaluate self-energy matrices used in the Green’s function formulation of transport
calculations. By adding a complex absorbing potential to the Hamiltonian of a semi-infinite lead, the problem
of inverting an infinite-dimensional matrix is transformed into a finite-dimensional eigenvalue problem. The
self-energies are calculated for all energies at once and can be tabulated for a given system. Examples are
presented to show the accuracy of the approach.
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I. INTRODUCTION

Motivated by experimental advances, methods for quan-
tum transport calculations have been developed at a great
pace in the last few years. Quantum transport is naturally
described within the nonequilibrium Green’s function
�NEGF� approach,1–3 which allows the use of a many-body
Green’s function. However, the complexity of the problem
limits the applicability to small systems. A more practical
approach is to use the density-functional theory �DFT�
Kohn-Sham Hamiltonian. The NEGF-DFT approach became
a popular and widely used tool in quantum transport
calculations,4–15 but other approaches such as the Lippmann-
Schwinger method16 and the wave-function matching
technique17 have also been developed. The limitations and
uncertainties of the NEGF-DFT calculations have also been
studied �see, e.g., Ref. 18� and transport calculations based
on time-dependent DFT �TDDFT� were proposed as a pow-
erful alternative.19,20

Unlike conventional electronic structure calculations
where one can use closed systems or periodic boundary con-
ditions, in quantum transport calculations one has to deal
with an open system where the device is connected to semi-
infinite leads. The lead is usually built of periodically re-
peated blocks and the system can be divided into left lead,
device �which may include several layers of the lead�, and
the right lead �Fig. 1�. The transmission probability can then
be calculated using a finite computational cell containing the
device, provided that the boundary conditions are known on
the surfaces dividing the device and the leads. These bound-
ary conditions can be given either by the wave function or by
the Green’s function of the leads. The problem is that these
boundary conditions have to be known at any energy for
which T�E� is to be calculated.

To calculate the transmission probability T�E� within the
NEGF formalism one first has to calculate the self-energies
of the leads. Various methods have been developed for this
purpose in the past. The common feature of these methods is
that they have to be repeated for each energy of interest. The
simplest method to calculate the Green’s function of the lead
is the iterative method, which is described, e.g., in Ref. 21. It
starts with the calculation of the Green’s function for a single
block of the periodic lead and adds more and more blocks
until convergence. The convergence however is extremely

slow because the termination of the infinite lead at a finite
distance generates reflections from the artificial boundary
and this effect will only be negligible if the boundary is far
away. The decimation method22 is a clever variant of the
iterative approach which greatly speeds up the convergence
by increasing the lead in a recursive way. The decimation
method is a very efficient way to calculate the Green’s func-
tion of the lead and is used in many quantum transport codes.
Other approaches calculate the Green’s function by solving
quadratic eigenvalue problems.15,23,24 The review paper21

gives a pedagogical introduction to these methods, shows the
equivalence of the different approaches, and provides an ex-
tensive source of references of self-energy calculations.

Absorbing boundary conditions by using complex absorb-
ing potentials �CAPs� were first introduced in time-
dependent quantum-mechanical calculations to avoid artifi-
cial reflections caused by the use of finite basis sets or
grids.25 These CAPs are located in the asymptotic region and
annihilate the outgoing waves preventing the undesired re-
flections. CAPs are intensively used in quantum-mechanical
calculations of chemical reaction rates and in time-dependent
wave-packet calculations.26–34 Complex potentials have also
been used in transport calculations.35–37

In this paper we show that a complex absorbing potential
can be used as a very efficient tool to calculate the Green’s
function and the self-energy of the leads. As the self-energies
are needed at many different energies, their calculation is
often the dominant part of transport calculations. In the ap-
proach suggested in this paper one can obtain the self-energy
for all energies at once. This is achieved by adding a CAP to
the Hamiltonian of the leads. The CAP transforms the infi-
nite lead into a finite system. The Hamiltonian of the lead
then can be diagonalized and the Green’s function can be

FIG. 1. �Color online� Schematic diagram of a two-probe de-
vice. The device is modeled by two semi-infinite electrodes �left
and right� and a central region �c�. The electrodes are divided into
principal layers �blocks� that interact only with the nearest-neighbor
layers.
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calculated using a spectral representation for any energy.
In a sense our approach is the opposite of what the work

in Ref. 37 pursued. In Ref. 37 a complex potential was de-
rived approximately from the self-energies of the leads. The
obtained complex potential was energy independent and non-
local. By adding the derived complex potential to the Hamil-
tonian of the device the need for self-energies is bypassed,
greatly simplifying the calculations. In this work we explic-
itly add a complex potential to the leads to calculate the
energy dependent self-energy matrices. The energy depen-
dence of the calculated self-energy matrices is simple and the
computation associated with the leads is decoupled from the
calculation of the device, just like in Ref. 37.

The outline of this paper is as follows. Section I is fol-
lowed by the description of the approach in Sec. II. Numeri-
cal examples are presented in Sec. III followed by a sum-
mary and outlook.

II. METHOD

In this section first we briefly show the CAP and discuss
its advantages. After introducing the definition of self-energy
and transmission coefficient we will show how one can use
the CAP to calculate the transmission probability.

A. Complex absorbing potentials

The complex potentials not only absorb the outgoing
waves but can also produce reflections themselves. The con-
struction and optimization of reflection-free CAPs are there-
fore pursued by many research groups. Many different forms
of pure imaginary potential have been investigated, including
linear,27 power-law,28,30 polynomial,31 and other param-
etrized functional forms �see Ref. 29 for a recent review�.
Besides purely imaginary potentials, complex potentials have
also been investigated.32 In this work we will adopt the CAP
developed in Ref. 33 and refined in Ref. 34. This negative
imaginary CAP is derived from a physically motivated dif-
ferential equation and its form is34

− iw�x� = − i
�2

2m
�2�

�x
�2

f�y� , �1�

where x1 is the start and x2 is the end of the absorbing region,
�x=x2−x1, c is a numerical constant, m is the electron’s
mass, and

f�y� =
4

�c − y�2 +
4

�c + y�2 −
8

c2 , y =
c�x − x1�

�x
. �2�

This CAP goes to infinity at the end of the absorbing region
and is therefore exactly transmission free. The CAP contains
only one parameter, the width of the absorbing region �x. Its
reflection properties are guaranteed to improve as this param-
eter is increased. Figure 2 shows the above CAP together
with electron density calculated solving a one-dimensional
model, scattering on a potential step. In the middle region,
where the CAP is zero, the calculated and exact densities are
equal. In the asymptotic region the wave function is ab-
sorbed by the CAP and the density gradually decreases to
zero.

B. Self-energies of the leads

To make the paper self-contained we briefly introduce the
definition of self-energies used in transport calculations. In a
suitably chosen basis representation the Hamiltonian and the
overlap matrix of the left-lead–device–right-lead system �see
Fig. 1�, under the assumption that there is no interaction
between the leads, takes the form

H = � HL HLC 0

HLC
† HC HRC

†

0 HRC HR
�, O = � OL OLC 0

OLC
† OC ORC

†

0 ORC OR
� , �3�

where HL �OL�, HC �OC�, and HR �OR� are the Hamiltonian
�overlap� matrices of the leads and the device, and HLC �OLC�
and HRC �ORC� are the coupling matrices between the central
region and the leads. By defining the self-energies of the
leads �X=L ,R� as

�X�E� = i��X�E� − �X
†�E�� , �4�

�X�E� = �EOXC − HXC�gX�E��EOXC − HXC� , �5�

where

gX�E� = �EOX − HX�−1 �6�

is the Green’s function of the semi-infinite leads, and defin-
ing the Green’s function of the central region

GC�E� = �EOC − HC − �L�E� − �R�E��−1, �7�

the transmission probability is given by

T�E� = Tr�GC�E��L�E�GC
† �E��R�E�� . �8�

To calculate the transmission probability, one first has to cal-
culate the Green’s functions of the leads gL�E� and gR�E� for
a given set of energy values and then determine the self-
energies and the Green’s function of the central region G�E�.
The self-energy of the lead is usually calculated by assuming
that the lead is made of periodically repeated blocks �see Fig.
1� and that the basis functions in these blocks only overlap
between neighboring blocks.

-20 -10 0 10 20
x (a.u.)

FIG. 2. Scattering on a potential step. The bold line shows the
complex absorbing potential, the dashed line is the potential step,
and the thin solid line is the square of the scattering wave function.
In the middle region where the CAP is zero the wave function is in
perfect agreement with the exact wave function �not shown in the
figure�.
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C. Self-energies of the leads with CAP

By adding the CAP �as defined in Eq. �1�� to the Hamil-
tonian of the leads one obtains

HL� = HL − iWL�x�, HR� = HR − iWR�x� , �9�

where WL and WR are the matrix elements of the complex
potential on the left and the right. Assuming that the basis
states only connect the neighboring blocks in the lead, these
matrices will have the same block-tridiagonal structure as the
lead’s Hamiltonian

HR =�
hR

00 hR
10† 0 0

hR
10 hR

00 hR
00† 0

0 hR
10 hR

00 . . .

0 0 . . . . . .
� , �10�

but for the nonperiodic complex potential the matrices in the
diagonals will not be identical

WR =�
wR

00 wR
10† 0 0

wR
10 wR

11 wR
21† 0

0 wR
21 wR

22 . . .

0 0 . . . . . .
� . �11�

These are finite-dimensional Hamiltonians; beyond the
range of the complex potential, the lead is effectively cut off.
To simplify the calculations we assume that the complex
potential starts one block away from the central region on
both sides of the central region. With this choice, assuming
that the basis functions in the leads only connect neighboring
blocks, HLC and HRC will not contain contributions from the
complex potential. The Hamiltonian of the system is now

H� = � HL� HLC 0

HLC
† HC HRC

†

0 HRC HR�
� . �12�

The transmission probability, the Green’s function of the
central region, and other quantities can be calculated in the
same way as before by replacing the leads’ Green’s functions
in the self-energies in Eq. �5� by

gX��E� = �EOX − HX��−1. �13�

In passing we note that using simple algebra one can
show that the transmission probability can also be calculated
by using

T�E� = Tr�G��E�WLG�†�E�WR� , �14�

where

G��E� = �EO − H��−1. �15�

This is the transmission probability formula used in quantum
chemical reaction-rate calculations.26 It differs from Eq. �8�
in two ways: � is replaced by W and instead of the Green’s
function of the central region GC it contains the Green’s
function G� of the whole system �including the complex po-
tentials�. This form, however, is computationally more ex-
pensive as the size of the G� matrix is larger than that of GC.

By adding the complex potential to the Hamiltonian of the
lead the semi-infinite Hamiltonian is transformed into a finite
Hamiltonian. The simplest way to calculate Green’s func-
tions of the leads is to diagonalize the complex Hamiltonians
HL� and HR� ,

HX�CX = EXOXCX, �X = L,R� . �16�

The Green’s function of the leads now can be calculated by
the spectral representation

�gL�ij = 	
k

CXikCXjk

E − EXk
, �17�

where CXik is the ith component of the kth eigenvector be-
longing to eigenvalue EXk. As the Hamiltonian matrix of the
lead is complex symmetric, the left and right eigenvalues are
equal and the left and right eigenvectors are complex conju-
gates of each other. For a given lead this diagonalization only
has to be done once in the beginning of the calculations and
the self-energies are then available for any desired energy.
The Hamiltonian and overlap matrices of the leads are in
block-tridiagonal form and this special sparse property al-
lows efficient iterative diagonalization. If the size of the ei-
genvalue problem becomes too large then one has to calcu-
late the Green’s function by direct inversion. This can also be
efficiently done as shown in the Appendix. Another possibil-
ity is to calculate only the eigensolutions whose contribution
dominate the spectral representation and introduce some ef-
fective truncation procedure.

III. RESULTS

In this section we show our test calculations for different
systems. To demonstrate the effectiveness of our approach
we have calculated the Green’s functions of the leads by
decimation22 and by using the CAP approach and compared
the transmission probabilities obtained by using the two dif-
ferent methods. As the CAP approach only affects the
Green’s functions of the leads, the device part is irrelevant
and we have restricted our calculations to simple devices and
tested the accuracy of the method for various leads.

A. Basis functions

In these tests we used DFT to describe the electronic
structure of the leads and the device. We first calculated the
self-consistent potential in the leads and in the device and
then set up the Hamiltonian and overlap matrices. The DFT
calculation was implemented on the Lagrange function
basis.38 We define three sets of Lagrange basis functions �i

L

and �i
R for the periodically repeated block in the left and the

right leads and �i
C for central region. The basis functions are

allowed to overlap with the neighboring blocks but only with
the nearest neighbors. In practice that means that the
Lagrange basis grid extends into the neighboring block in the
left and in the right. Next, using these basis functions we
have diagonalized the Hamiltonian of the central region HC
and the Hamiltonians hL and hR of the periodically repeated
blocks. Using an energy cutoff Ec we have truncated the
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eigenfunction sets. The eigenfunction sets 	i
L, 	i

R, and 	i
C

with eigenenergies below the energy cutoff are used as basis
states in the calculation.

Using the basis sets constructed as described above, the
matrix elements of the Hamiltonian in the central region are
defined as

�HC�ij = 
	i
C�H�	 j

C�, �HXC�ij = 
	i
X�H�	 j

C� , �18�

where X=L ,R. The Hamiltonians of the lead parts are

�hX�ij
00 = 
	i

X�H�	 j
X�, �hX�ij

10 = 
	i
X��H�	 j

X� , �19�

with

	X��x,y,z� = 	X�x + a,y,z�, �a = l,r� , �20�

where l and r are the distances between the centers of the
periodically repeated blocks in the leads. The overlap matrix
is defined analogously by replacing H with the unit operator.
These basis functions thus connect only the nearest-neighbor
blocks leading to block-tridiagonal matrix representations.
This allows us to use the decimation technique to calculate
the leads’ self-energies and compare the results to those ob-
tained by the CAP approach.

A similar block-tridiagonal structure could have been
achieved by employing atomic-orbital type basis functions
provided that the cutoff radius of the atomic orbitals and the
size of the periodically repeated blocks are suitably chosen.
Other choices of basis functions are also possible. The main
motivation behind the Lagrange function representation was
the simplicity of the implementation.

The energy cutoff Ec is chosen in such a way that the
maximum change in the transmission probability due to the
increase of Ec is smaller than 1%. The typical number of
basis states used in the calculations is about 3–4 times of the
number of electrons in a given block.

B. Conductance of monoatomic aluminum wire

Our first example is a monoatomic Al wire �placing Al
atoms 2.4 Å apart�. Both the decimation and the CAP ap-
proaches use the same basis and therefore, apart from the
complex potential in the CAP case, the Hamiltonian and
overlap matrices are identical. The decimation provides well
converged self-energies after about 25 iterations and we con-
sider this the “exact” results and compare it to the CAP re-
sults. Figure 3 shows the convergence of the CAP results for
different ranges of the complex potential �in units of number
of lead blocks�. As mentioned earlier, the increase of the
CAP range leads to the decrease of reflections and the CAP
results quickly converge to the exact values. In the CAP
approach, the leads’ Green’s functions were expressed by
their spectral representation, so after the eigenvalue problem
�Eq. �16�� was solved the self-energies were available for any
energy at no extra cost.

We also tested the direct inversion �described in the Ap-
pendix� which has to be repeated for all energies of interest.
Both methods give identical results. Table I compares the
calculation time for the different approaches. The direct in-
version is about ten times faster than decimation and in

larger lead blocks the speed up is expected to be even more
significant. The computational times presented in the table
are the times spent for calculating the self-energy for 100
energy values. In case of CAP with diagonalization, this time
is essentially spent on the diagonalization of the leads’ com-
plex Hamiltonians and adding more energy values does not
change the computational time. In both decimation and CAP
with direct inversion, the computational time is directly pro-
portional to the number of energy values.

C. Conductance of monoatomic C wire between Al leads

The calculation of the conductance of a monoatomic car-
bon wire is a popular test case of transport calculations.39–41

In this test case a straight wire of seven carbon atoms is
attached to Al�100� electrodes �lattice constant 4.05 Å�. The
C-C distance is fixed to 1.42 Å and the distance between the
ends of the carbon chain and the first plane of Al atoms is
1 Å. The Al lead block contains 18 atoms in four layers. The
blocks in the right and the left lead are identical.

Figure 4 shows the transmission probability as a function
of the energy. The CAP and decimation results are in com-
plete agreement.

D. Conductance of carbon nanotubes

In this example we calculated the conductance of carbon
nanotubes and compared the transmission obtained from

TABLE I. Basis size and computational time of the presented
examples. NL=NR is the dimension of the basis representing the
lead block. The calculation time �in seconds� is the calculation time
of the self-energy for 100 energy values using CAP with diagonal-
ization �CAP1�, CAP with direct inversion �CAP2�, and decimation.

System NL CAP1 CAP2 Decimation

Al mono 30 0.05 0.6 5.1

Al wire 180 10.0 130 1230

CN �10,10� 300 45 580 6870
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FIG. 3. �Color online� Transmission probability of a mono-
atomic Al wire. The result obtained by the decimation method �solid
black line� is compared to the CAP of different ranges �blue dashed
line two blocks, red dotted line four blocks�. The CAP results using
six blocks are indistinguishable from the decimation results within
the line width on the figure.
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CAP and decimation. The agreement between the two ap-
proaches �Fig. 5� is again excellent. Next, we test the CAP
method for a carbon nanotube with a Hückel Hamiltonian.
The tight-binding matrix elements are taken from Ref. 42
and the parametrization used is from Ref. 43. In this case, we
did not explicitly calculate the matrix elements of the com-
plex potentials but in the spirit of the Hückel approach we
simply added the W�x� to the diagonal elements of the
Hamiltonian. �The complex potential W�x� was evaluated at
the corresponding atomic positions.� The results are shown
in Fig. 6. In this case, the agreement is not perfect, but con-
sidering the approximate nature of the construction of the
matrix elements the closeness of the results is remarkable.

IV. SUMMARY

We have presented an efficient and accurate way to cal-
culate self-energy matrices of the Green’s function calcula-
tions. By adding a complex absorbing potential to the Hamil-
tonian of the semi-infinite lead, the lead can be terminated in
a finite distance leading to finite-dimensional matrices. In
this way the leads’ Green’s functions can be calculated from
their spectral representation for any energy at once. The test
examples presented in the paper show the accuracy and ef-
fectiveness of the approach. For a given lead and basis set
the lead’s Green’s functions can be precalculated and tabu-

lated eliminating the computational bottleneck related to
self-energy evaluations in transport calculations.

We have used a CAP which depends only on one param-
eter, its range and its accuracy can be increased by enlarging
the range. This gives us a very effective way of controlling
the convergence of the method. Other choices of complex
potentials are possible; we will work on optimizing the CAP
for transport calculations.

In typical transport calculations the dimension of the ma-
trices used to describe a single block of the lead is on the
order of a few hundreds. In our approach 4–6 of those blocks
are used so the typical dimension of the matrices to be di-
agonalized is a few hundreds to a few thousands. Complex
symmetric matrices of that size can be easily diagonalized
with standard direct diagonalization approaches. The Hamil-
tonian and overlap matrices are block tridiagonal, and by
using this special sparse structure the diagonalization can be
made much faster. Iterative diagonalization can also be use-
ful but so far we have used the whole eigenspectrum to con-
struct the Green’s functions, and so the advantage of iterative
approaches when more than a few eigensolutions is needed is
not tested. In the future we will investigate the possibility of
using only a few dominant eigensolutions in the spectral rep-
resentation of the leads’ Green’s functions. If a few dominant
eigensolutions provide satisfactory accuracy, an iterative so-
lution for those target eigensolutions will make the approach
even more powerful.

The present work implemented the CAP approach using
basis states that only connect the neighboring blocks in the
lead. This choice was made to allow direct comparison be-
tween the decimation method and the CAP approach and test
the accuracy of the latter. The CAP can be implemented with
other basis function representations as well. Work in that
direction will be pursued in the future.

ACKNOWLEDGMENTS

This work was supported by NSF under Grant No. ECS-
0622146.

APPENDIX

If the size of the eigenvalue problem in Eq. �16� becomes
unmanageable by iterative methods, one has to calculate the
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FIG. 4. �Color online� Transmission probability of a seven-atom
monoatomic C wire sandwiched between Al�100� electrodes. The
result obtained by the decimation method �solid red line� is com-
pared to the CAP result �dashed blue line� obtained by using six
lead blocks.

FIG. 5. Transmission probability of a �10,10� carbon nanotube.
The decimation and CAP �six blocks� results are in perfect
agreement.

FIG. 6. �Color online� Transmission probability of a �5,5� car-
bon nanotube using Huckel Hamiltonian. The CAP calculation is
obtained by using six blocks.
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inverse directly. For completeness, we provide an algorithm
to perform this inverse. The calculated part of the lead’s
Green’s function that enters into self-energy matrices has
block-tridiagonal form, and the algorithm takes advantage of
this structure. The function gX��E� is used only in Eq. �5�, and
in that context only the first �X=L� or last �X=R� of the N
diagonal blocks of gX��E� is needed. The calculation of the ith
diagonal block of gX��E� is given by

gXi� = �Ai − Bi�−1, �A1�

where Ai and Bi are calculated recursively as

Ai = hX
00 − hX

10Ai+1
−1 hX

01, AN = hN
00, �A2�

Bi = hX
01�hX

00 − Bi−1�−1hX
10, B1 = 0, �A3�

where

hX
00�E� = EoX

00 − hX
00 + iwX

00, �A4�

hX
01�E� = EoX

01 − hX
01 + iwX

01, �A5�

hX
10 = hX

01. �A6�
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